

О ДЕЯТЕЛЬНОСТИ МЕЖДУНАРОДНОГО СОВЕТА ПО БОЛЬШИМ ЭНЕРГЕТИЧЕСКИМ СИСТЕМАМ CIGRE (KOMUTET SC D2)

Данилин А.В.

Российский Национальный Комитет CIGRE, исследовательский комитет D2 «Информационные системы и телекоммуникации» ОАО «НИИПТ», Санкт-Петербург

Что такое CIGRE?

Международный совет по большим энергетическим системам — одна из лидирующим мировых организаций, работающих в области технических и экономических вопросов электроэнергетики, проблем окружающей среды, организационных и регулирующих аспектов.

Постоянно действующая, неправительственная и некоммерческая организация, базирующаяся во Франции. Основана в 1921 году.

Основные задачи:

- 1. Содействие обмену информацией и опытом между инженерами и специалистами во всем мире и развитие знаний в области энергетических систем.
- 2. Дополнение знаний и расширение информированности путем объединения знаний о самых современных практиках и решениях в мире.
- 3. Предоставление обобщенной информации руководителям, принимающим решения и регулирующим структурам в области электроэнергетики.

Что такое CIGRE?

Миссией CIGRE является решение актуальных вопросов в областях:

- Планирование и оперативное управление ЭС.
- 2. Проектирование, размещение и эксплуатация оборудования электростанций, подстанций и ЛЭП высокого напряжения.
- 3. Системы защиты ЭС.
- 4. Телеуправление.
- 5. Телекоммуникации.
- 6. Информационные системы

На данный момент представлены около 90 стран, более 6000 независимых представителей, более 1000 – от энерго-компаний и компаний – поставщиков решений и технологий.

SC D2 CIGRE

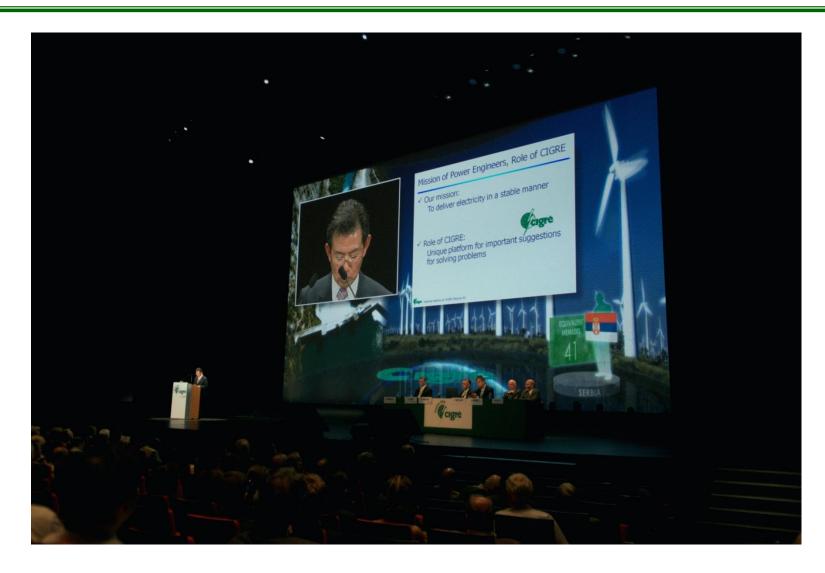
Study Committee D2 "Information Systems and Telecommunications"

Специализация комитета:

- 1. Спецификации, дизайн, инженерные решения, вопросы внедрения, эксплуатации, аспекты экономики и управления ИТ на предприятиях электроэнергетики.
- 2. Развитие сервисов передачи голоса, видео, интернет, систем защиты и телесигнализации, SCADA, EMS, DMS.

Миссия:

Демонстрация возможностей современных достижений в области информационных и телекоммуникационных систем в применении к предприятиям электроэнергетики.



Организация работы CIGRE

- 1. Основной метод координации взаимодействия членов исследовательских комитетов совместные сессии в августе каждого четного года в Париже (раз в два года). Собираются все комитеты, работа ведется как совместно, так и по комитетам.
- 2. Предварительно членами комитета подготавливаются несколько документов:
 - 1. Специальный общий отчет (заслушивается всеми заинтересованными). Описывает результаты деятельности комитета за прошедший период.
 - 2. Вопросы и ответы по отчету.
 - 3. Отчеты по деятельности рабочих групп исследовательского комитета (заслушиваются на закрытых заседаниях SC).
- 3. Организуется серия дискуссий по актуальным темам (как закрытые, так и доступные для всех участников сессии).

43 сессия CIGRE, август 2010, Париж

Организация работы CIGRE

- 1. Отдельные исследовательские комитеты собираются на коллоквиумы каждый второй нечетный год самостоятельно. Проводятся на территории страны, имеющей собственный Национальный Комитет и выразившей желание провести коллоквиум. Продолжительность 1-2 дня.
- 2. При необходимости к участию могут привлекаться эксперты различных компаний. Их количество ограничивается 3 представителями от каждой страны.
- 3. Обсуждаемые вопросы предварительно отбираются председателем комитета. Группы вопросов определяются Национальным Комитетом, организующим коллоквиум, в соответствие с утвержденными направлениями исследований.
- 4. Подготавливается один обзорный доклад по деятельности комитета, и 2-3 специализированных, сопровождаемых дискуссиями.
- 5. Итог коллоквиума заключение по обсуждаемым вопросам, основанное на результатах дискуссий.

Организация работы CIGRE

Основная работа производится в рабочих и консультационных группах, организуемых внутри исследовательских комитетов.

Руководитель рабочей группы отвечает за организацию взаимодействия участников (телеконференции, электронная почта, веб-порталы, график работ и т.п.).

Каждый член исследовательского комитета может стать участником от одной до 4 рабочих или консультационных групп.

Задача группы – подготовить итоговый документ по направлению (Technical Brochure, Special Report, Annual Progress Report etc.). Документ должен всесторонне освещать рассматриваемую задачу или область с точки зрения лучших практик применения, доступных технологий и мнений ведущих экспертов.

Задача каждого члена группы – привлекать опыт и знания национальных экспертов, работающих в заданной области исследований, при работе над документом.

Результат работы CIGRE

Основной результат – подготовленные технические документы, утвержденные исследовательскими комитетами и Центральным Офисом CIGRE.

Документы публикуются в специализированном издании «Electra» и предоставляются основным заказчикам, поставщикам оборудования и решений в исследуемой области.

ADVISORY GROUPS				
Ref	Title	Convener	Dates (Creation - Disbanding)	
<u>D2.01</u>	Core business information systems and services	G. Ericsson (SE)	2009	
<u>D2.03</u>	Telecommunication networks, services and technology	M. Mesbah (FR)	2007	

Working Groups - Task Forces				
Ref	Title	Convener	Dates (Creation - Disbanding)	
<u>D2.18</u>	Metering, Billing and CRM functions	G. Vidrio (MX)	2004 - 2007	
<u>D2.24</u>	EMS Architecture for the 21st century	R. Kalisch (US)	2006 - 2010	
D2.26	Telecom Service Delivery Model, Architecture, Management and Support in the Electrical Power Utility	M. Mesbah (FR)	01/2009 - 12/2010	
<u>D2.27</u>	Power Line Carrier Channel Modeling, Planning and Usage	G. Vrabic (SI)	01/2009 - 12/2010	
<u>D2.28</u>	Communication Architecture for IP-based Substation Applications	H. RIIS (DK)	01/2009 - 12/2010	
<u>D2.29</u>	Communication access to Electrical Energy Consumers and Producers	P. Moray (GB)	01/2009 - 12/2010	
JWGD2/B5.30	Communications for HV Substation Protection & Wide Area Protection Applications	M. Mesbah (FR)	01/2009 - 12/2012	
D2.31	Security architecture principles for digital systems in Electric Power Utilities (EPUs)	J. Zerbst (SE)	2010-2013	

Над чем идет работа в CIGRE сегодня?

Основная тема: «Энергосистемы будущего».

Исследовательские комитеты сконцентрированы на вопросах архитектуры сетей, планирования, управления, рыночных механизмов, экологии и др.

Активно разрабатываются подходы к созданию микро-сетей и супер-сетей (microgrids & supergrids).

Описываются подходы к интеграции microgrids и supergrids, к созданию активных распределительных сетей, виртуальных электростанций, новых инструментов моделирования, планирования и управления.

Разрабатываются механизмы информационного взаимодействия субъектов электроэнергетики, вопросы рыночного взаимодействия и регулирования.

Над чем идет работа в SC D2 сегодня?

Все работы направлены на развитие основной темы: «Энергосистемы будущего»:

- 1. Практические аспекты реализации цифровой подстанции IEC 61850:
 - 1.1. Преимущества внедрения за пределами подстанций.
 - 1.2. Влияние на автоматизацию подстанции (информационная безопасность, WI-FI, требования к системам релейной защиты и автоматики).
 - 1.3. Архитектура и аспекты реализации информационных технологий в связке «автоматизация ПС – внешние коммуникации».
 - 1.4. Вопросы совместимости устройств, поддерживающих 61850.
 - 1.5. Коммуникационные требования к системам защиты и WAMS.
- 2. Информационная безопасность на предприятиях электроэнергетики:
 - 1.1. Конвергенция физической и логической безопасности.
 - 1.2. Формирование среды (набора технологий и методик) для управления информационной безопасностью.
 - 1.3. Информационная безопасность в SCADA, EMS, DMS, MMS...
 - 1.4. Управление рисками в области информационной безопасности.
- 3. WAMS-технологии и парадигма SMART-GRID.
- 4. Телекоммуникации, противоаварийная автоматика и защита.

Взаимодействие с МЭК

В составе членов CIGRE присутствуют и члены рабочих групп МЭК. Руководитель ТС57 МЭК Терри Лефебре представил доклад «Гармонизация СІМ и 61850»:

- Прорабатываются вопросы семантических соглашений в топологии UMLкомпонентов между CIM и 61850.
- Вопросы обмена информацией. 61850 предусматривает разделы, регламентирующие обмен информацией. СІМ нет.
- Миграция UML-модели в классы 61850.
- Определение прецедентов использования (use cases), поддержка которых необходима при гармонизации. Основной упор на их значение для конечного потребителя.
- Основной упор на связи:
 - SCADA RTU.
 - Smart Grid Architecture NIST PAP.
 - Расширение 61850-7-420 (distributed energy dispatching).
- На текущий момент даны рекомендации рабочим группам:
 - WG13 (CIM) реализовать обозначенные шаги гармонизации.
 - WG10 (61850) продумать аспекты адресации при конфигурировании (SCL) в целях реализации концепции гармонизации.

Международный симпозиум CIGRE в сентябре 2011

CIGRE извещает о проведении международного симпозиума «Энергосистемы будущего – интеграция микро-сетей и суперсетей».

Место и дата: Болонья (Италия), 13-15 сентября 2011 г.

cigre@federaeit.it

http://www.cigre.it

sylvie.bourneuf@cigre.org

http://www.cigre.org

Приглашаются желающие выступить с докладами!